Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy.

نویسندگان

  • Y Oda
  • S Iwai
  • E Ohtsuka
  • M Ishikawa
  • M Ikehara
  • H Nakamura
چکیده

To clarify the mechanism by which the RNA portion of a DNA/RNA hybrid is specifically hydrolyzed by ribonuclease H (RNase H), the binding of a DNA/RNA hybrid, a DNA/DNA duplex, or an RNA/RNA duplex to RNase HI from Escherichia coli was investigated by 1H-15N heteronuclear NMR. Chemical shift changes of backbone amide resonances were monitored while the substrate, a hybrid 9-mer duplex, a DNA/DNA 12-mer duplex, or an RNA/RNA 12-mer duplex was titrated. The amino acid residues affected by the addition of each 12-mer duplex were almost identical to those affected by the substrate hybrid binding, and resided close to the active site of the enzyme. The results reveal that all the duplexes, hybrid-, DNA-, and RNA-duplex, bind to the enzyme. From the linewidth analysis of the resonance peaks, it was found that the exchange rates for the binding were different between the hybrid and the other duplexes. The NMR and CD data suggest that conformational changes occur in the enzyme and the hybrid duplex upon binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy.

The solution structures of two 27 nt RNA hairpins and their complexes with cobalt(III)-hexammine [Co(NH(3))(6)(3+)] were determined by NMR spectroscopy. The RNA hairpins are variants of the P4 region from Escherichia coli RNase P RNA: a U-to-A mutant changing the identity of the bulged nucleotide, and a U-to-C, C-to-U double mutant changing only the bulge position. Structures calculated from NM...

متن کامل

Divalent metal cofactor binding in the kinetic folding trajectory of Escherichia coli ribonuclease HI.

Proteins often require cofactors to perform their biological functions and must fold in the presence of their cognate ligands. Using circular dichroism spectroscopy. we investigated the effects of divalent metal binding upon the folding pathway of Escherichia coli RNase HI. This enzyme binds divalent metal in its active site, which is proximal to the folding core of RNase HI as defined by hydro...

متن کامل

Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain

Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA-DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex...

متن کامل

Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site.

Ribonuclease H (RNase H) selectively degrades the RNA strand of RNA.DNA hybrids in a divalent cation-dependent manner. Previous structural studies revealed a single Mg(2+) ion-binding site in Escherichia coli RNase HI. In the crystal structure of the related RNase H domain of human immunodeficiency virus reverse transcriptase, however, two Mn(2+) ions were observed suggesting a different mode o...

متن کامل

Thermal Adaptation of Conformational Dynamics in Ribonuclease H

The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H), an 18 kD globul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 21 20  شماره 

صفحات  -

تاریخ انتشار 1993